MGSC 1205 Quantitative Methods I

Slides Five – Multi-period application & Sensitivity Analysis

Ammar Sarhan

Multi-period Applications: Production Scheduling

- Most challenging application of LP is modeling multi-period scenarios.
 - Situations where decision maker has to determine optimal decisions for several periods (weeks, months, etc.).
 - These problems especially difficult because decision choices in later periods are directly *dependent* on decisions made in earlier periods.
- Production planning must consider four factors:
 - Satisfying demands [simplifies planning & the scheduling of workers & machines]

 $\begin{bmatrix} \text{inventory} \\ \text{at the} \\ \text{end of} \\ \text{this month} \end{bmatrix} = \begin{bmatrix} \text{inventory} \\ \text{at the} \\ \text{end of} \\ \text{last month} \end{bmatrix} + \begin{bmatrix} \text{current} \\ \text{month's} \\ \text{production} \end{bmatrix} - \begin{bmatrix} \text{sales(demand)} \\ \text{this month} \end{bmatrix}$

- Necessity to reduce inventory carrying, or holding, costs. [suggests producing in each month only what is needed in that month]
- Warehouse limitations cannot be exceeded. [without great additional storage cost]
- Minimum production capacity should be used each month

Example: Greenberg Motors, Inc. (p. 104)

- <u>Greenberg Motors, Inc.</u> manufactures two different electrical motors for sale under contract to Drexel Corp: Model GM3A & GM3B
- **Demand** (Four-month order schedule for motors)

Model	January	February	March	April
GM3A	800	700	1,000	1,100
GM3B	1,000	1,200	1,400	1,400

- Production cost
 - Now GM3A \$10, GM3B \$6; Will increase in March to \$11 and \$6.60, respectively
- Holding cost (cost of carrying inventory)
 - GM3A is \$0.18 & GM3B is \$0.13 per month.
- Storage capacity: GMI can hold a maximum of 3300 motors of either type (they are similar in size) at any time
- Each GM3A motor produced requires 1.3 hours of labour, and each GM3B takes a worker 0.9 hours to assemble.
- Minimum labour hours: GMI has a base employment level of 2240 hours per month.
- Maximum labor hours: In a busy period, the company can bring two retired skilled employees on board to increase capacity to 2560 hours per month.
- The company looks for the production schedule that minimizes total cost of per unit production & monthly holding

Decision variables & Objective function

Decision Variables.

- P_{Ai} = number of model GM3A motors produced in month *i*
- P_{Bi} = number of model GM3B motors produced in month *i*
- I_{Ai} = level of on-hand inventory for GM3A at the end of month *i*
- I_{Bi} = level of on-hand inventory for GM3B at the end of month *i* (*i*=1,2,3,4 for January–April).

Minimize total cost

- Production cost
 - Now GM3A \$10, GM3B \$6; Will increase in March to \$11 and \$6.60, respectively

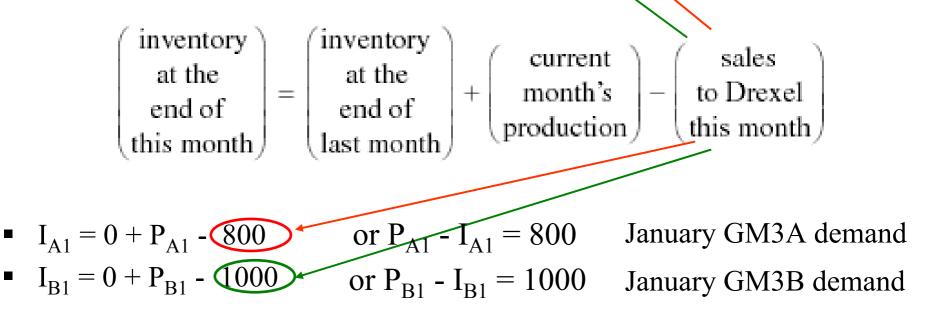
 $\mathbf{PC} = 10 \ (\mathbf{P}_{A1} + \mathbf{P}_{A2}) + 11 (\mathbf{P}_{A3} + \mathbf{P}_{A4}) + \mathbf{6} \ (\mathbf{P}_{B1} + \mathbf{P}_{B2}) + \mathbf{6.60} (\mathbf{P}_{B3} + \mathbf{P}_{B4})$

- Holding cost (cost of carrying inventory)
 - GM3A is \$0.18 & GM3B is \$0.13 per month.

 $HC = 0.18(I_{A1} + I_{A2} + I_{A1} + I_{A2}) + 0.13(I_{B1} + I_{B2} + I_{B1} + I_{B2})$

Total cost = PC + HC

Decision variables & Objective function


- **The objective function**
- Minimize total costs

 $C = 10 (P_{A1} + P_{A2}) + 11(P_{A3} + P_{A4}) + 6 (P_{B1} + P_{B2}) + 6.60(P_{B3} + P_{B4}) + 0.18(I_{A1} + I_{A2} + I_{A1} + I_{A2}) + 0.13(I_{B1} + I_{B2} + I_{B1} + I_{B2})$

Constraints on Demand

Model	January	February	March	April
GM3A	800	700	1,000	1,100
GM3B	1,000	1,200	1,400	1,400

- Demand / Inventory constrains set the relationship between closing inventory this month, closing inventory last month, this month's production and sales.
- Inventory at end of month is:

Constraints on Demand

	Model	January	February	March	April					
	GM3A	800	700	1,000	1,100					
	GM3B	1,000	1,200	1,400	1,400					
$P_{A2} + I_{A1} - I_{A2} = 700$ February GM3A demand										
$P_{B2} + I$	$I_{B1} - I_{B2} =$	= 1,200	Fel	oruary GI	M3B dem	nand				
$P_{A3} + I$	$I_{A2} - I_{A3} =$	= 1,000	Ma	rch GM3	A demar	nd				
$P_{R3} + I$	$I_{B2} - I_{B3} =$	= 1,400	Ma	rch GM3	B deman	nd				
$P_{A4} + I_{A3} - I_{A4} = 1,100$			Ap	ril GM3A	A demand	1				
$P_{B4} + I$	$I_{B3} - I_{B4} =$	=1,400	Ap	ril GM3E	B demand	1				

If Greenberg wants to have on hand additional 450 GM3As and 300 GM3Bs at end of April, add constraints:

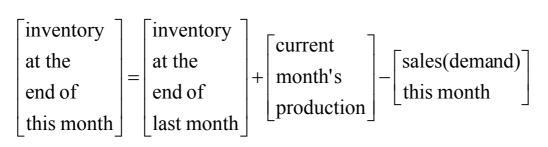
$$I_{A4} = 450$$
 and $I_{B4} = 300$

Warehouse Space Constraints

The storage area for GM can hold a maximum of 3,300 motors of either type at any one time.

$$I_{A1} + I_{B1} \le 3,300$$
$$I_{A2} + I_{B2} \le 3,300$$
$$I_{A3} + I_{B3} \le 3,300$$
$$I_{A4} + I_{B4} \le 3,300$$

Labour Constraints


- Minimum labour hours is 2,240 each month.
- The maximum labour capacity is 2,560 hours each month.
- GM3A requires 1.3 hours, GM3B requires 0.9 hours.

 $1.3 P_{A1} + 0.9 P_{B1} \ge 2,240$ $1.3 P_{A1} + 0.9 P_{B1} \le 2,560$ $1.3 P_{A2} + 0.9 P_{B2} \ge 2,240$ $1.3 P_{A2} + 0.9 P_{R2} \le 2,560$ $1.3P_{A3} + 0.9P_{B3} \ge 2,240$ $1.3P_{A3} + 0.9P_{B3} \le 2,560$ $(1.3P_{A4} + 0.9P_{B4} \ge 2,240)$ $1.3 P_{AA} + 0.9 P_{BA} \le 2,560$

(January min. hours) (January max. hours) (February min. hours) (February max. hours) (March min. hours) (March max. hours) (April min. hours) (April max. hours)

Solution to Multiple period applications

- Decision choices in later periods are directly dependent on decisions made in earlier periods.
- Decision variables: number of units produced/inventoried
- Objective: minimize cost
 - Total cost = production cost + holding cost (carrying inventory)
- Constrains
 - Inventory / Demand :

- Warehouse space: maximum storage area
- Labor: minimum & maximum capacity

Marketing Application: Media Selection

- <u>Win Big Gambling Club</u> promotes gambling junkets from a large Midwestern city to casinos in the Bahamas.
- Club has budgeted up to \$8,000 per week for local advertising.
- Money is to be allocated among four promotional media:

	Audience	Cost	Maximum Ads
Medium	Reached Per Ad	Per Ads	Per Week
TV spots	5000	\$800	12
Newspaper ads	8500	\$925	5
Prime-time radiospots	2400	\$290	25
Afternoon radio spots	2800	\$380	20

✓ Contract arrangements require at least 5 radio spots per week.

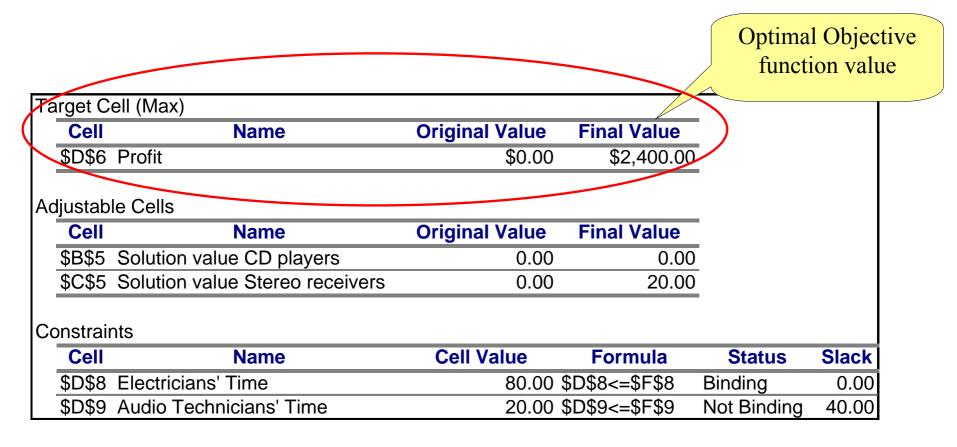
✓ Management insists no more than \$1,800 be spent on radio ad per week.

<u>Win Big's goal</u> – reach largest possible high-potential audience through various media.

How can we handle changes?

- We have solved *LP* problems under **deterministic** assumptions.
 - find an optimum solution given certain constant parameters (costs, price, time, etc)
- How well do we know these parameters?
 - Usually not very accurately rough estimates
 - Conditions in most world situations are dynamic & changing
 - \checkmark prices of raw materials change
 - \checkmark product supply changes
 - \checkmark new machinery is bought to replace old
 - ✓ employee turnover occurs ...

Sensitivity Analysis


- <u>Post-optimality</u> analysis: examining changes after the optimal solution has been reached.
 - input data are varied to assess optimal solution sensitivity.
- Basic Question: How does our solution change as the input parameters change?
 - How much does the <u>objective function</u> change?
 - How much do the <u>optimal values</u> of the decision variables change?
 - **Do our results remain valid** (If the parameters change...)?

Example: High Note Sound Company

- The company Manufactures quality CD players and stereo receivers.
- Each CD player sold results in \$50 profit, while each receiver yields \$120 profit.
- Each product requires skilled craftsmanship.
 - Each CD player requires: 2 hours electrician's time and 3 hours technician's time
 - Each receiver requires: 4 hours electrician's time and 1 hour technician's time
- Hours available: 80 for electrician's time, 60 for technician's time
- **Objective:** maximize profit

:🛃 Eile	<u>E</u> dit <u>V</u> iew Insert F <u>o</u> rmat <u>T</u> ools <u>D</u> ata <u>W</u> indow	Help			Тур	e a question for hel	P
			rial 🔽 10	• B I U 🖺 🧮	≣ %,	t.0 .00 ⊡ - <u></u> .00 →.0 ⊡ - <u></u>	<mark>»</mark> -
D6	 ✓	В	С	D	E	F	
1	High Note Sound	l Comp	any				
2							
3		С	R				
		CD	Stereo	B5: C	.5		
4		players	receivers		Ι	D6	
5	Solution value	0.00	20.00				
6	Profit	\$50	\$120	\$2,400.00	<	D8:D9	
7	Constraints						
8	Electricians' Time	2	4	80.00	<=	80	
9	Audio Technicians' Time	3	1	20.00	<=	60	
10				LHS	Sign	RHS	
11							
12							
13							
14							
15	4.1 / Answer Report / Sensitivity Report /			< III			
	TATY ADMARKEDUL & SEIDINING REPORT /		1	• j.			

Ready

- This table gives us information obtained from the objective function.
 - \checkmark which cell the objective function is located in
 - \checkmark its initial value before solver was initiated
 - ✓ the value obtained by plugging in the values of the decision variables from the optimal corner point.

Target C Cell	ell (Max) Name	Original Value	Final Value	Optimal so	olution
\$D\$6	Profit	\$0.00	\$2,400.0	value	
Adjustab	le Cells				Í
Cell	Name	Original Value	Final Value		
\$B\$5	Solution value CD players	0.00	0.00		
\$C\$5	Solution value Stereo receivers	0.00	20.00		
Constraii	nts				
Cell	Name	Cell Value	Formula	Status	Slack
\$D\$8	Electricians' Time	80.00	\$D\$8<=\$F\$8	Binding	0.00
\$D\$9	Audio Technicians' Time	20.00	\$D\$9<=\$F\$9	Not Binding	40.00

- ✤ This table gives us information on the decision variables.
 - \checkmark which cells the decision variables are located in
 - \checkmark their initial values before solver was initiated
 - \checkmark their values corresponding to the optimal solution

Target C	ell (Max)					
Cell	Name	Original Value	Final Value	1		
\$D\$6	Profit	\$0.00	\$2,400.00			
Adjustab	le Cells					
Cell	Name	Original Value	Final Value			
\$B\$5	Solution value CD players	0.00	0.00			
\$C\$5	Solution value Stereo receivers	0.00	20.00			
				-		
Constrair	nts					
Cell	Name	Cell Value	Formula	Status	Slack	
\$D\$8	Electricians' Time	80.00	\$D\$8<=\$F\$8	Binding	0.00	
\$D \$9	Audio Technicians' Time	20.00	\$D\$9<=\$F\$9	Not Binding	40.00	

- \checkmark This table gives us information the constrains.
 - Cell value: how much of the given resource is used up in obtaining the optimal solution
 - ✓ Formula: the constraint equation in cell notation

Target C	ell (Max)					
Cell	Name	Original Value	Final Value			
\$D\$6	Profit	\$0.00	\$2,400.00			
Adjustab	le Cells				s colun	
Cell	Name	Original Value	Final Value	indicat	es whe	ther a
\$B\$5	Solution value CD players	0.00	0.00	constra	int is ex	xactly
\$C\$5	Solution value Stereo receivers	0.00	20.00	satisfied	l (LHS=	=RHS
Constrair	nts					
Cell	Name	Cell Value	Formula	Status	Slack	
\$D\$8	Electricians' Time	80.00	\$D\$8<=\$F\$8	Binding	0.00	
\$D\$9	Audio Technicians' Time	20.00	\$D\$9<=\$F\$9	Not Binding	40.00	

Binding means the constrain is exactly satisfied, and LHS = RHS.

- All the available resource is fully used in the solution
- Nonbinding means that some of the resource has not been fully used up in the final solution

Target C	ell (Max)					
Cell	Name	Original Value	Final Va	lue		
\$D\$6	Profit	\$0.00	\$2,40	00.00		
Adjustab						
,				This	column inc	licates
Cell	Name	Original Value	Final V	.1		1
\$B\$5	Solution value CD players	0.00		the	amount of u	nused
\$C\$5	Solution value Stereo receivers	0.00			resource	
Constrair	nts					
Cell	Name	Cell Value	Formu	la	Status	Slack
\$D\$8	Electricians' Time	80.00	\$D\$8<=\$F	\$8	Binding	0.00
\$D\$9	Audio Technicians' Time	20.00	\$D\$9<=\$F	\$9	Not Binding	40.00

Slack is the difference between the *RHS* and the *LHS* of a \leq constrain

- Binding constrain: slack =0.
- A nonbinding constrain is when the slack > 0.

Ac	djustab	le Cells	Final	Reduced	Objective	Allowable	Allowable
Γ	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
	\$B\$5	Solution value CD players	0.00	-10.00	50.00	10.00	1E+30
\leftarrow	\$C\$5	Solution value Stereo receivers	20.00	0.00	120.00	1E+30	20.00
Co	onstrair	nts					
			Final	Shadow	Constraint	Allowable	Allowable
	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
	\$D\$8	Electricians' Time	80.00	30.00	80.00	160.00	80.00
	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Audio Technicians' Time	20.00	0.00	60.00	1E+30	40.00

- We are analyzing only one change at a time
- This table presents information regarding the impact of changes to the OFCs (i.e., the unit profits of \$50 & \$120)
 - Allowable Increases & Allowable Decreases: they are the range of values for which we can change the *OFC*s, and still have current Corner Point remain as Optimal Solution
 - \blacktriangleright This is the whole point of doing the analysis!

Adju	ustabl	e Cells					
			Final	Reduced	Objective	Allowable	Allowable
	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$	B\$5	Solution value CD players	0.00	-10.00	50.00	10.00	1E+30
\$	C\$5	Solution value Stereo receivers	20.00	0.00	120.00	1E+30	20.00
Con	strair	nts					
			Final	Shadow	Constraint	Allowable	Allowable
(Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$	D\$8	Electricians' Time	80.00	30.00	80.00	160.00	80.00
\$	D\$9	Audio Technicians' Time	20.00	0.00	60.00	1E+30	40.00

- ✓ It is allowed to increase the *OFC* value by up to \$10 and still have no change in optimal solution.
- ✓ Excel's notation for ∞ : the price of CD players can be dropped by ∞ and still has no change in optimal solution (we still won't make any).

Adjustab	le Cells					
		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$B\$5	Solution value CD players	0.00	-10.00	50.00	10.00	1E+30
\$C\$5	Solution value Stereo receivers	20.00	0.00	120.00	1E+30	20.00
Constrai	nts					
		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$D\$8	Electricians' Time	80.00	30.00	80.00	160.00	80.00
	Audio Technicians' Time	20.00	0.00	60.00	1E+30	40.00

At what point would we want to start making CD player?

✓ Back to **Reduced Cost**.

- Losing \$10 for each CD player that we choose to make with its current OFC.
- If we can somehow raise the OFC by \$10 per unit, making CD players stops losing money; If we raise it more than \$10, then producing CD players becomes profitable
- > This is exactly the Allowable Increase for CD player!

Adjustable Cells							
			Final	Reduced	Objective	Allowable	Allowable
	Cell	Name	Value	Cost	Coefficient	Increase	Decrease
	\$B\$5	Solution value CD players	0.00	-10.00	50.00	10.00	1E+30
	\$C\$5	Solution value Stereo receivers	20.00	0.00	120.00	1E+30	20.00
Constraints							
			Final	Shadow	Constraint	Allowable	Allowable
	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
	\$D\$8	Electricians' Time	80.00	30.00	80.00	160.00	80.00
	\$D\$9	Audio Technicians' Time	20.00	0.00	60.00	1E+30	40.00

Allowable Increases & Allowable Decreases: they are the range of values for which we can change the *OFC*s, and still have current
 Corner Point remain as Optimal Solution

Sensitivity Analysis

We have solved LP problems under deterministic assumptions. i.e., finding an optimum solution given certain constant parameters (costs, price, time, etc.)

Conditions in most world situations are dynamic & changing

prices of raw materials change, product supply changes, new machinery is bought to replace old, employee turnover occurs ...

Post-optimality analysis: examining changes after the optimal solution has been reached.

Sasic Question: How does our solution change as the input parameters change?

***** Do our results remain valid (If the parameters change...)?